All four questions carry equal weight.

Problem 1. (12.5) Show that the following two are equivalent for a class \mathcal{H} of integrable real random variables on some probability space $(\Omega, \mathcal{F}, \mathbf{P})$.

- (i) \mathscr{H} is uniformly integrable.
- (ii) The class \mathscr{H} is L^1 bounded and for every $\varepsilon > 0$ there is a $\delta > 0$ such that

$$\sup_{f \in \mathscr{H}} \int_{A} |f| d\mathbf{P} \leq \varepsilon \text{ whenever } A \in \mathscr{F} \text{ satisfies } \mathbf{P}(A) < \delta.$$

Problem 2. (12.5) Let $(\Omega, \mathscr{F}, \mathbf{P})$ be a probability space and let \mathscr{G} be a sub σ -field of \mathscr{F} . Let X, X_n be integrable random variables on $(\Omega, \mathscr{F}, \mathbf{P})$. Prove the following Monotone Convergence theorem for conditional expectations: If $X_n \ge 0$ and $X_n \uparrow X$ a.s., then $\mathbf{E}(X_n | \mathscr{G}) \uparrow \mathbf{E}(X | \mathscr{G})$ a.s.

Problem 3. (12.5) Let $(\Omega, \mathscr{F}, \mathbf{P})$ be a probability space on which we are given a filtration $\{\mathscr{F}_n\}_{n\geq 0}$. Let $\{X_n\}$ be a square integrable $\{\mathscr{F}_n\}$ -martingale. Show that the following are equivalent:

- (i) $\sup_{n\in\mathbb{N}_0}\mathbf{E}|X_n|^2<\infty$.
- (ii) $\lim_{n\to\infty} \mathbf{E}[\langle X_n \rangle] < \infty$.
- (iii) X_n converges in L^2 .
- (iv) X_n converges a.s and in L^2 .

[Hint: You may use Doob's L^p inequality without proof.]

Problem 4. (12.5) Let *E* be a Polish space and let $\{X_n\}_{n \in \mathbb{N}_0}$ be a *E* valued Markov chain with distributions $\{\mathbf{P}_x\}_{x \in E}$ on (Ω, \mathscr{F}) . Let τ be a finite stopping time with respect to $\{\mathscr{F}_n\}$ where $\mathscr{F}_n = \sigma\{X_0, \ldots, X_n\}$. Prove the following strong Markov property: For any bounded measurable map $F : \mathbb{N}_0 \times E^{\infty} \to \mathbb{R}$

$$\mathbf{E}_{x}(F(\tau, X_{\tau+\cdot}) \mid \mathscr{F}_{\tau}) = G(\tau, X_{\tau})$$

where $G(m,x) \doteq \mathbf{E}_x(F(m,X))$ for $(m,x) \in \mathbb{N}_0 \times E$.