STOR 635 Exam: CWE Year: 2019

There are 4 questions. Attempt all questions. You may appeal to any result proved in class without proof unless you are specifically asked to "**Give a complete proof.**". State any result you use. All questions are worth the same number of total points (10 points). Points for parts of a question can be found in boxes on the right. *Even if you don't know the complete solution DONT STRESS OUT. Put down your attempt.* Partial credit will be assigned so try your best on each question.

Fix a probability mass function p := {p_k}_{k≥0} and let {Z_n}_{n≥0} with Z₀ = 1 be a branching process with offspring distribution p. More precisely, let {ξ_{i,j} : i, j≥1} be i.i.d with distribution p. Now define the sequence {Z_n}_{n≥0} recursively with Z₀ = 1 and let

$$Z_n := \sum_{j=1}^{Z_{n-1}} \xi_{n,j} \qquad n \ge 1,$$

with the understanding that if $Z_{n-1} = 0$ then $Z_n = 0$. Thus $\xi_{n,j}$ is interpreted as the number of children of individual j in generation n - 1. Define the probability generating function of p as

$$\phi(s) := \sum_{k=0}^{\infty} s^k p_k, \qquad s \in [0,1]$$

Suppose there exists a unique $0 < \rho < 1$ such that $\phi(\rho) = \rho$.

- (a) Show that the sequence $\{\rho^{Z_n} : n \ge 0\}$ is a Martingale. Here the filtration $\{\mathcal{F}_n : n \ge 0\}$ is defined by $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and for $n \ge 1$, $\mathcal{F}_n = \sigma(\{\xi_{mj} : 1 \le m \le n, j \ge 1\})$. Give a complete proof.
- (b) Give reasons why there should be a limit random variable Y such that

$$\rho^{Z_n} \xrightarrow{a.s.} Y.$$

- (c) Calculate $\mathbb{E}(Y)$. Give reasons for your answer (don't just put down the answer).
- Let (Ω, F, P) be a probability space and let {F_n : n ≥ 1} be a collection of increasing sub σ-fields namely F_n ⊆ F for all n ≥ 1 and

$$\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \mathcal{F}_3 \subseteq \cdots$$

Think of \mathcal{F}_n as the amount of information on day n. Define the sigma field

$$\mathcal{F}_{\infty} := \sigma(\cup_{n=1}^{\infty} \mathcal{F}_n).$$

Give a complete proof to show that for any $A \in \mathcal{F}_{\infty}$, and any $\varepsilon > 0$, you can find an $n < \infty$ and $B \in \mathcal{F}_n$ (both n and B typically depend on A and ε) such that

 $\mathbb{P}(A\Delta B) \leqslant \varepsilon.$

Here $B\Delta A := (B \setminus A) \cup (A \setminus B)$.

Hint: Good set principle

Point of the problem: You are showing that you can **approximate** any set in \mathcal{F}_{∞} by sets that you know about in "finite" time.

10

5

3

2

3. Suppose the Markov chain has finite state space S with |S| = K. Further assume it is irreducible namely for every $x, y \in S$, $\mathbb{P}_x(T_y < \infty) = 1$ where $T_y = \inf \{n \ge 1 : X_n = y\}$. Let $a := \inf \{p_{xy} : p_{xy} > 0\}$ i.e. the smallest value amongst all strictly positive elements of the transition matrix. Show that there exists a constant $C(a, K) < \infty$ such that

$$\max_{x,y\in S} \mathbb{E}_x(T_y) \leqslant C(a,K).$$

Suppose {X_i : i ≥ 1} are a sequence of real valued exchangeable (not necessarily integrable i.e. one could have E(|X₁|) = ∞) random variables. Further suppose φ : R₊ → R is a bounded measurable function. Give a complete proof to show that there exists a random variable Y_∞ such that

$$\frac{\sum_{i=1}^{n}\varphi(X_i)}{n} \xrightarrow{a.s.} Y_{\infty}$$

If you are planning to use De-Finetti's theorem then give a complete proof to show how one can derive the result above from De-Finetti's theorem. Just writing down De-Finetti implies "conditionally *i.i.d.* and thus we get the above result" will get you at most 3 points unless you can clearly justify how you can use De-Finetti to prove the above result. Note: you can also prove the above result directly without appealing to De-Finetti.

STOR 635 End