Statistics 655 Comprehensive Written Exam August 2017

All problems have equal weight; partial credit will be given for each part of a problem. In budgeting your time, note that some parts will take longer than others. In many cases, different parts of a problem can be done independently, so if you are unsure how to handle one part of a problem, don't hesitate to try the others. No answer should require a great deal of computation or a complicated proof.

1. Let $\mathcal{P} = \{f(x : \alpha, \beta) : \alpha, \beta > 0\}$ be a family of densities on \mathbb{R}^d with parameters α and β . Suppose that \mathcal{P} has Fisher information matrix

$$I(lpha,eta) = \left[egin{array}{cc} 2lpha^2/eta & lphaeta \ lphaeta & eta^3 \end{array}
ight]$$

Let $X_1, X_2, \ldots \in \mathbb{R}^d$ be i.i.d. with $X_i \sim f(x : \alpha, \beta)$. In answering the questions below, you may assume that any necessary regularity and moment conditions hold.

- (a) Find a lower bound on the variance of any unbiased estimate of α based on X_1, \ldots, X_n when β is known.
- (b) Find a lower bound on the variance of any unbiased estimate of α based on X_1, \ldots, X_n when β is unknown.
- (c) Find a lower bound on the variance of any unbiased estimate of α/β based on X_1, \ldots, X_n when α, β are unknown. You may leave your answer in matrix form, but please specify the entries of the matrices.
- (c) What can you say about the limiting behavior of the maximum likelihood estimate $\hat{\theta}_n$ of $\theta = (\alpha, \beta)$ based on X_1, \ldots, X_n ?

2. Let $A \subseteq \mathbb{R}^d$ be a bounded set, and define a function $F : \mathbb{R}^d \to \mathbb{R}$ by

$$F(x) = \sup_{y \in A} ||x - y||$$

where $|| \cdot ||$ is the standard Euclidean norm.

- (a) Let $X \in \mathbb{R}^d$ be a random vector with finite mean. Find an inequality relating $F(\mathbb{E}X)$ and $\mathbb{E}F(X)$. Carefully justify your answer.
- (b) Let $X \sim \mathcal{N}_d(\mu, I)$ be a multi-normal random vector with identity variance matrix. Find a bound on the probability that $F(X) - \mathbb{E}F(X)$ is greater than t. Carefully justify your answer.
- 3. Let U_1, U_2, \ldots, U and V_1, V_2, \ldots, V be random variables defined on the same probability space, such that $U_n \to U$ in probability and $V_n \Rightarrow V$ in law.
 - (a) Let $g : \mathbb{R} \to \mathbb{R}$ be bounded and uniformly continuous. Does $\mathbb{E}g(U_nV_n) \mathbb{E}g(UV_n) \to 0$? Justify your answer.
 - (b) Argue that $U_n V_n \Rightarrow UV$ if U is independent of V_1, V_2, \ldots, V .

4. Let $X_1, X_2, \ldots, X \in \mathbb{R}$ be i.i.d. random variables. For $j \ge 1$ define $\mu_j = \mathbb{E}X^j$ to be the *j*th moment of X if the expectation is well defined.

- (a) Show carefully that μ_1 is finite if μ_4 is finite.
- (b) Assuming that μ_1, \ldots, μ_4 are finite, what can you say about the limiting distribution of $\log(1 + \overline{X_n^2})$ where $\overline{X_n^2} = n^{-1} \sum_{i=1}^n X_i^2$?

5. Let $X_1, X_2, \ldots \ge 0$ be identically distributed (not necessarily independent) random variables with finite mean. For $n \ge 1$ define $M_n = \max(X_1, \ldots, X_n)$.

- (a) Show that for any $\alpha \geq 0$ we have $M_n \mathbb{I}(M_n \leq \alpha) \leq \sum_{i=1}^n X_i \mathbb{I}(X_i \leq \alpha)$.
- (b) What can you say about the asymptotic behavior of the ratio M_n/n as $n \to \infty$?