STOR 664 CWE 2019

- (1) The hiring manager Tom posed the following question in a job interview: Each of factors A and B separately causes significant changes on variable y. However, when acting together, the collective effect of A and B on the change of y is not obvious at all. Why is that? As a statistician, please formulate the problem in an unambiguous statistical setting that includes (1a) well defined variables; (1b) a clear criterion under which people can compare different models and procedures; (1c) a reasonable answer to Tom's question.
- (2) Consider the regression model $y_i = \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i$, $i = 1, \dots, n$.
 - (2a) In a controlled experiment, the covariates x_{ij} are assumed to be known, with unknown coefficients β_j , j = 1, ..., p; and ϵ_i , i = 1, ..., n are iid random errors with mean 0 and an unknown variance σ^2 . Suppose the sample size n is moderate and it is not possible to collect more data (due to some unexpected experimental difficulties). Propose a detailed procedure to obtain confidence intervals for $\beta_1, ..., \beta_p$?
 - (2b) In an observational social study, the covariates $\{x_{ij}\}$ are also included in the given data set together with $\{y_i\}$, but cannot be treated as fixed values. What procedure would you propose to obtain confidence intervals for $\beta_1, ..., \beta_p$ based on the observed data $\{(y_i; x_{i1}, ..., x_{ip}) : i = 1, ..., n\}$?
- (3) Consider the regression model $y = X\beta + \epsilon$ with observations $y = (y_1, ..., y_4)^t$, unknown coefficients $\beta = (\beta_1, \beta_2, \beta_3)^t$, iid errors $\epsilon = (\epsilon_1, ..., \epsilon_4)^t$ with mean zero and unknown variance

 σ^2 , and design matrix $X = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ -1 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix}$.

- (3a) Find an unbiased estimate for β_2 based on y? Can you find the BLUE for β_2 ? Explain.
- (3b) Is there identifiability issue for this model? If so, how would you resolve it?
- (3c) Is it possible to test $H_0: \beta_2 = 0$? If so, provide the test statistics. If not, explain.