STOR 762 Comprehensive Written Exam August 12, 2015

- This exam consists of 3 questions on 2 pages.
- The exam is closed book and closed notes.
- You are NOT allowed to use a calculator or a cell phone throughout the exam.
- Explain your answers in detail.

Problem 1. (30 points) Let X be an Erlang-2 random variable with probability density function $f(x) = xe^{-x}, x \ge 0$.

- (a) Provide an acceptance-rejection algorithm to generate random variates from f(x) using the majorizing function $t(x) = 2e^{-1-x/2}, x \ge 0$.
- (b) Provide a convolution algorithm to generate random variates from f(x).
- (c) Compare the algorithms provided in parts (a) and (b) in terms of computational efficiency.

Problem 2. (40 points) Consider processes $\{X_i\}_{i\geq 1}$ and $\{Y_i\}_{i\geq 1}$ defined by

$$X_i = X_{i-1} + \epsilon_i$$
, for $i = 1, 2, \ldots$,

and

$$Y_i = Y_{i-1} + \theta_i$$
, for $i = 1, 2, \dots$

where $X_0 = Y_0 = 1$, $\{\epsilon_i\}_{i \ge 1}$ is a sequence of independent and uniformly distributed random variables over [-a, a] for real a > 0, and $\{\theta_i\}_{i \ge 1}$ is another sequence of independent and uniformly distributed random variables over [-b, b] for real b > 0. To estimate the difference in the long-run average mean of these two processes, a single simulation run of length nobservations for each process is conducted by using common random numbers (CRN). Answer the following questions assuming that the inverse-transform method is used for the generation of all random variates.

- (a) Obtain an expression for Y_i in terms of X_i for i = 1, 2, ..., n under CRN.
- (b) Let \bar{X}_n and \bar{Y}_n denote the sample mean from the single run conducted for processes $\{X_i\}_{i\geq 1}$ and $\{Y_i\}_{i\geq 1}$, respectively. Show that $Var(\bar{Y}_n) = (b/a)^2 Var(\bar{X}_n)$ and $Cov(\bar{X}_n, \bar{Y}_n) = (b/a)Var(\bar{X}_n)$ under CRN.
- (c) Obtain an expression for $Var(\bar{X}_n \bar{Y}_n)$ in terms of $Var(\bar{X}_n)$ under CRN.
- (d) Suppose that instead of using CRN, an independent stream of random numbers are used to generate $\{Y_i\}_{i\geq 1}$. Obtain an expression for $Var(\bar{X}_n \bar{Y}_n)$ in terms of $Var(\bar{X}_n)$ under this independent sampling procedure.
- (e) Based on your answers to parts (c) and (d), what is the percent reduction in $Var(\bar{X}_n \bar{Y}_n)$ achieved by using common random numbers instead of independent sampling if b = 2a?
- (f) Explain how you would construct a 95% confidence interval on the long-run average difference of means of these two processes using the method of batch means with b batches and the CRN method. Be specific about the upper and lower bounds of the confidence interval that you obtain (i.e., express them as functions of $\{X_i, i = 1, 2, ..., n\}$ and $\{Y_i, i = 1, 2, ..., n\}$).
- (g) Discuss what your answer to part (e) suggests for the quality of the confidence interval given in part (f).

Problem 3. (30 points) Let X_1, X_2, \ldots, X_n be a finite sequence of independent and identically distributed observations with mean $\mu < \infty$ and variance $\sigma^2 < \infty$. Answer the following questions regarding the mean estimator $\hat{\mu} = \sum_{i=1}^{n} a_i X_i$, where a_i 's are some real numbers.

- (a) Under what condition(s) on $\{a_i\}_{i=1}^n$, $\hat{\mu}$ is an unbiased estimator of μ ?
- (b) Provide a sequence $\{a_i\}_{i=1}^n$ that satisfies the condition(s) given in part (a) and also yields the smallest variance for the mean estimator $\hat{\mu}$.
- (c) Discuss whether the mean estimator identified in part (b) is a consistent estimator for μ .